
The Failure of Noise-Based Non-Continuous Audio Captchas

Elie Bursztein∗ Romain Beauxis† Hristo Paskov∗ Daniele Perito‡ Celine Fabry, John Mitchell∗
∗Stanford University, †Tulane University, ‡INRIA

{elie|hpaskov|jcm}@cs.stanford.edu, rbeauxis@tulane.edu, perito@inrialpes.fr, celine@celine.im

Abstract—CAPTCHAs, which are automated tests intended
to distinguish humans from programs, are used on many
web sites to prevent bot-based account creation and spam.
To avoid imposing undue user friction, CAPTCHAs must
be easy for humans and difficult for machines. However,
the scientific basis for successful CAPTCHA design is still
emerging. This paper examines the widely used class of
audio CAPTCHAs based on distorting non-continuous speech
with certain classes of noise and demonstrates that virtually
all current schemes, including ones from Microsoft, Yahoo,
and eBay, are easily broken. More generally, we describe
a set of fundamental techniques, packaged together in our
Decaptcha system, that effectively defeat a wide class of audio
CAPTCHAs based on non-continuous speech. Decaptcha’s
performance on actual observed and synthetic CAPTCHAs
indicates that such speech CAPTCHAs are inherently weak
and, because of the importance of audio for various classes of
users, alternative audio CAPTCHAs must be developed.

I. INTRODUCTION

Many websites rely on Completely Automated Pub-
lic Turing tests to tell Computers and Humans Apart
(CAPTCHA1) [18] to limit abuse in online services such as
account registration. These tests distinguish between humans
and automated processes by presenting the user with a task
that is easy for humans but hard for computers. Designing
such tests, however, is becoming increasingly difficult
because of advances in machine learning. In particular, the
widely used category of image based captchas have received
close scrutiny recently [17], [25], [30], [31].

While widely provided for accessibility reasons, audio
captchas have received substantially less scientific attention.
Virtually all current audio captchas on popular sites consist
of a sequence of spoken letters and/or digits that are distorted
with various kinds of noise. For simplicity, we will refer
to such non-continuous audio captchas simply as audio
captchas in the remainder of the paper.

Almost a decade ago, Kochanski et al [15] investigated
the security of audio captchas and developed a synthetic
benchmark for evaluating automatic solvers. This study,
which concludes that humans outperform speech recognition
systems when noise is added to spoken digits, has guided the
design of modern audio captchas. Two later and independent
studies [27], [23] demonstrate that a two-phase segment-
and-classify approach is sufficient to break older versions
of Google and Yahoo audio captchas. Two-phase solvers
operate by first extracting portions of the captcha that contain
a digit and then using machine learning algorithms to identify

1For readability, we will write captcha instead of CAPTCHA in the rest
of this paper.

the digit. When machine learning algorithms are trained to
overcome the distortions of an individual captcha scheme,
they are far more effective than speech recognition systems
[3], [26].

In this paper, we describe a two-phase approach that is
sufficient to break modern audio captchas. One reason that
audio captchas might be weaker than visual captchas stems
from human physiology: the human visual system consumes
a far larger portion of our brains than the human audio
processing system. In addition, modern signal processing
and machine learning methods are fairly advanced. As a
result, the difference between human and computer audio
capabilities is likely significantly less than the difference
between human and computer visual processing.

While we believe our results demonstrate practical breaks,
there is room for some debate on the success rate needed
to consider a captcha scheme ineffective in practice. In
many applications, a concerted attacker may attempt to
set up fraudulent accounts using a large botnet (e.g., [16]).
Since modern botnets may control millions of compromised
machines [24], it is reasonable to expect that an attacker
could easily afford to make one hundred attempts for every
desired fraudulent account. Therefore, a computer algorithm
that solves one captcha out of every one hundred attempts
would allow an attacker to set up enough fraudulent accounts
to manipulate user behavior or achieve other ends on a target
site. A target 1% success rate is conservative relative to other
studies, which hold that “automatic scripts should not be
more successful than 1 in 10,000” attempts [11]. In fact, we
greatly surpass 1% in all but one case.

Contributions. We present Decaptcha, a two-phase audio
captcha solver that defeats modern audio captchas based
on non-continuous speech. The system is able to solve
Microsoft’s audio captchas with 49% success and Yahoo’s
with 45% success, often achieving better accuracy than
humans. This performance also comes at a low training
cost because Decaptcha requires 300 labeled captchas and
approximately 20 minutes of training time to defeat the
hardest schemes. After training, tens of captchas can then
be solved per minute using a single desktop computer.

We also evaluate Decaptcha on a large-scale synthetic
corpus. Our results indicate that non-continuous audio
captcha schemes built using current methods (without
semantic noise) are inherently insecure. As a result, we
suspect that it may not be possible to design secure audio
captchas that are usable by humans using current methods.
It is therefore important to explore alternative approaches.

Decaptcha’s success stems from the following contributions:
• Automated segmentation. We present a low-cost tech-

nique based on acoustic energy analysis that accurately
segments noisy audio.

• Speech analysis. We test the performance of a variety
of techniques for speech and signal analysis in the
presence of various kinds of noise.

• Fully Automated Classification. We demonstrate the
efficacy of a technique for automatic parameter tuning
of the RLSC algorithm suggested by [21].

• Real World evaluation. We evaluate the performance
of Decaptcha on a large corpus of real world Captchas
from Authorize, Ebay, Microsoft, Recaptcha, Yahoo
and Digg.

• Synthetic evaluation We perform a large scale evalua-
tion of the effects of different kinds of noise on captcha
security. The 4.2 million synthetic captchas used for
this study are generated by a method presented in [15],
which is freely available.2

Outline. The remainder of the paper is organized as follows:
In Section II we review the audio processing and machine
learning techniques that are used in Decaptcha. In Section III
we describe how Decaptcha is implemented and the design
decisions behind each step. In Section IV we present the
real captcha schemes that were evaluated, give Decaptcha’s
performance on them, and discuss specifics. In Section V
we present the synthetic captchas that were tested using
Decaptcha, give performance as a function of noise, and
discuss. Finally, we present related work in Section VI and
conclude in Section VII.

II. BACKGROUND

Decaptcha can be split into three main components: a seg-
mentation stage that extracts spoken digits, a representation
scheme for the extracted digits, and a classification stage
that recognizes each digit. While Decaptcha uses two active
phases, the intermediate representation is an important part
of a two-phase solver because of its impact on performance.
Accordingly, the first three subsections of this section provide
a high-level overview of the concepts used in each of the
three components. We then discuss the metrics that are used
to measure Decaptcha’s performance.

A. Segmentation

An audio captcha is initially represented as a signal
S = s0, . . . , sn−1 where each si denotes the amplitude
of the signal at fixed time intervals. The spacing of these
time intervals is called the sampling rate. Segmentation
finds contiguous intervals of S that contain digits and as
little extraneous noise as possible. We briefly discuss useful
statistics for this process, referring the reader to [13] for a
more detailed discussion of concepts used in this section
and the next.

2Those interested in the corpus should contact the authors.

Root Mean Square (RMS). RMS measures the
acoustic energy of an audio signal and is defined as

RMS(S) =

√
s20+...s

2
n−1

n . Values are reported on a
logarithmic scale in units of decibels (dB).

Signal to Noise Ratio (SNR). SNR measures the
relative energy between audio and noise signals as
10 log10(

RMS signal
RMS noise).

B. Signal Representations

Once each digit has been extracted, it is represented as a
temporal signal. This section discusses the transformations
that can be applied to this signal to improve digit recognition.

Discrete Fourier Transform (DFT). The DFT, also re-
ferred to as the Fast Fourier Transform (FFT), of a signal
decomposes it into a series of sinusoids. Formally, DFT (S)
reparameterizes S into n complex coefficients f0, . . . , fn−1
where fi =

∑n−1
u=0 sje

−2πu i
n . The fi quantify how much

of the signal occurs as a sinusoid with frequency of i
n and

therefore represent S in the frequency domain. The inverse
DFT (IDFT) is computed using the following formula:
s′i =

1
n

∑n−1
u=0 fje

2πu i
n .

Cepstrum. The cepstrum [6] is computed as S → DFT →
magnitude → log → IDFT → magnitude where the
magnitude and log operations are applied element-wise to
an input sequence. The cepstrum gives a frequency analysis
of the energy of the harmonics contained in the signal.

Spectro-Temporal Features (STF). STFs refer to a class
of 2D representations that track how a unidimensional
transform (such as a DFT or cepstrum) changes over time.
Given a unidimensional transform F , the STF of S computes
F on intervals of length m, called frames, every k time steps.
We will refer to the STF using a DFT or a cepstrum as the
TFR and TCR respectively.

Two-Dimensional Cepstrum (TDC). Our last
representation scheme is another 2D variant of the
cepstrum that has proved useful for voice recognition [1],
[10]. Given the TCR of S computed over d frames of length
m and stored in a m× d matrix X , the TDC computes the
inverse DFT of each row of X . This depicts the frequencies
with which cepstral coefficients change across frames.

We have experimented with the following signal analysis
techniques in an attempt to provide better noise filtering.

Blackman Window. Blackman windowing is a technique
used to combat deleterious effects on the DFT caused
by discontinuities that appear around the edges of each
frame. In particular, a frame is weighted by a function
that drops to zero around its edges before computing
the DFT. The weight of each sample is given by
wi = 0.42− 0.5 cos

(
2πi
m

)
+ 0.08 cos

(
4πi
m

)
.

Figure 1. Representations of a “four” digit

Mel Scale. The mel scale redistributes frequencies on
a logarithmic scale that matches how humans perceive
frequencies. The mel value of a frequency f is given by
m = 2595 log10

(
f

700 + 1
)

. We also use the mel scale to
shrink our data without impacting useful information by
averaging intervals of mels.

Figure 1 illustrates, in top-down left to right order, the
original representation of the digit four, its DFT, Cepstrum,
TFR, TCR, and TDC.

C. Classification

The classification stage of Decaptcha receives a digit
represented in one of the aforementioned schemes and
attempts to recognize it. This section provides an overview
of the classification algorithm Decaptcha employs (see [22]
for a thorough description). We begin with a high level
discussion of classification before moving on to the actual
algorithm.

Binary Classification. Given N labeled examples
(x1, y1), . . . , (xn, yn) with xi ∈ Rd and yi ∈ {−1, 1},
binary classification attempts to train a classifier, i.e. find a
decision rule, that accurately predicts the labels of unseen
points. It is customary to assume that a classifier outputs a
real number that is thresholded at some value – typically
zero – to determine a binary label.

One Versus All (OVA). Multi-category classification ex-
tends the binary paradigm by allowing labels to be any
integer in 1, . . . , T for a fixed number, T , of classes. The
OVA scheme solves multi-category classification by training
T separate binary classifiers. Classifier i is trained on labels
that are positive for all training points labeled as class i
and negative for all others. A new point is classified by
running it through all T classifiers and taking the index of
the highest scoring one. For example, if we are classifying
pictures of cats, dogs, and horses, we would train 3 binary

classifiers. The first classifier would be trained by labeling
all pictures of cats as positive and all pictures of dogs and
horses as negative. The second and third classifiers would
be trained in a similar fashion. Given a new picture, we
would, for example, label it a cat if and only if the first
classifier gives it a higher score than the other two.

Testing Error. Testing error measures how well a classifier
generalizes and is defined as the expected frequency with
which it will misclassify a new point. It is clear that the
objective of both, binary and multi-category classification,
is to come up with a decision rule that has minimal testing
error. A reliable estimate of testing error can be obtained
by computing a classifier’s error on a sample of points that
were not used during training.

Regularized Least Squares Classification (RLSC). RLSC
is an adaptation of a regression algorithm to binary classifica-
tion [22]. It was introduced as a fast yet similarly performing
alternative to the Support Vector Machine (SVM), one of
the most successful binary classifiers. In its simplest form,
RLSC finds a hyperplane w ∈ Rd that separates its training
data into positive and negative classes by solving

w = min
w∈Rd

1

n

N∑
i=1

(yi − wTxi)2 + λwTw

The label of a new point x ∈ Rd is found by taking the
sign of wTx. It takes min(O(N3), O(Nd2 + d3)) to solve
for w. We can also train an entire OVA scheme consisting
of T classifiers in the time it takes to train a single binary
classifier.

Leave One Out (LOO). The LOO error of a binary classifier
is another estimate of the testing error. It is found as the
average error the classifier makes on each point when it is
held out from the training set. Computing the LOO error
in general requires training N classifiers, but in the case of
RLSC, it can be found at the cost of training a single binary
classifier. The LOO error of an OVA scheme is similarly
found by holding out each point and checking whether the
OVA scheme trained on N − 1 points predicts its label.
This multi-category LOO error can be found efficiently by
computing the LOO error of each binary classifier in the
OVA scheme.

Parameter Tuning. The accuracy of RLSC critically relies
on a regularization parameter λ that keeps the classifier
from overfitting or underfitting its training data. A good
value for λ can be found by trying a range of regularization
parameters and selecting the one with lowest LOO error.
It is possible to compute the LOO error of O(min(N, d))
candidate values in the time it takes to solve a single binary
classifier.

Web Site

Captcha scraping

Sound processing

Mechanical Turk users

Captcha labels

Discretized and segmented captcha

Classifier

Answers

Figure 2. Overview of the System

D. Metrics

We conclude our overview with a discussion of the metrics
that are used to evaluate the performance of a captcha solver.

The most basic measure of performance is accuracy, the
fraction of captchas that are answered correctly. However,
solvers may also select which captchas they respond to, in
which case we need more fine grained metrics. Coverage
is the fraction of captchas that a solver attempts to answer.
For Decaptcha, this is the number of captchas that were
segmented correctly. Precision is the accuracy of the solver,
computed only on the captchas it attempts to answer. This
metric is equivalent to Decaptcha’s classification accuracy.
Finally, as will be discussed later, Decaptcha is a supervised
solver that requires a set of sample captchas to train on. A
measure of a supervised algorithm’s efficiency is given by
the corpus size, the number of labeled captchas, it needs
to train on to obtain a specific accuracy. A lower value
indicates a less secure captcha scheme because it requires
less training effort to break.

III. DECAPTCHA

This section describes Decaptcha and the design decisions
behind it. We begin with an overview of the system and then
discuss its segmentation, representation, and classification
components.

A. Overview

Decaptcha is a supervised algorithm that must be trained
on each captcha scheme. Training requires a set of captchas
labeled with their answers. It outputs an automatic solver
and an estimate of Decaptcha’s expected performance on
the scheme. Figure 2 depicts the interactions of Decaptcha’s
three processing stages during and after training. The
segmentation stage is unsupervised, i.e. it is does not
undergo training, and it ”cuts” out the pieces of a captcha that
are likely to contain digits. Each cut is then converted to a
representation scheme that must be specified before training.
Finally, a (supervised) classifier is trained to recognize the
digit in each cut. The next three sections detail each of these
stages.

-30

-25

-20

-15

-10

 0 1 2 3 4 5 6 7

M
a

g
n

it
u

d
e

 (
d

B
)

Time (sec)

-30

-25

-20

-15

-10

 0 1 2 3 4 5 6 7

M
a

g
n

it
u

d
e

 (
d

B
)

Time (sec)

Figure 3. RMS peak analysis

B. Segmentation

Segmentation determines which pieces of the captcha
are likely to contain digits by looking at a subsampled
version of the signal. Given a window length l, the original
signal is split into segments of length l and is subsampled by
computing their RMS. A cut is extracted when a consecutive
sequence of segments
• lasts a minimal duration (0.4 sec by default).
• contains at least one segment with RMS higher than

a given level (−16 dB by default), referred to as the
noise level.

• ends with a segment whose RMS is below the noise
level and is a local minimum.

We determine appropriate values for the noise level and
window length for each captcha. Indeed, optimal parameters
differ even among captchas from the same scheme. These
parameters are jointly optimized over a grid of values
between −10 to −30 dB for noise level and 0.1 to 0.5
sec for window length. The largest window size and noise
level that produce a correct number of segments for the
given captcha scheme are selected. We prefer larger values
because they give a clearer separation between noise and
signal and avoid overly small cuts. Furthermore, joint
optimization is necessary because the two parameters are
interrelated; noise level is a measure of energy that depends
on the window length.

We chose this segmentation algorithm because it is
fast and does not modify the original signal. Traditional
methods[2] for noise analysis filter the frequency
representation of a captcha and therefor require computing
the DFT and IDFT of the entire signal. This method is
computationally expensive for large-scale experiments and
leads to a potential loss of information when switching
between frequency and temporal representations.

In order to understand the workings of our segmentation
approach, it is necessary to categorize the types of noise

present in a captcha. Captchas usually feature a combination
of distortions present as low energy background noise and
a medium energy intermediate noise. The simplest form
of noise, constant noise, is a constant sound such as white
noise or perpetual buzzing. More complicated noise that
changes over time but has similar energy level, duration,
and regularity is known as regular noise. Unrecognizable
speech that is repeated throughout the captcha falls into
this category. Finally, semantic noise consists of a signal
that has similar characteristics to a spoken digit but is not
a useable digit. We consider music or vocal tracks to be
semantic noise.

Our RMS subsampling acts as a low-pass RMS filter
that eliminates constant and regular noises and only leaves
peaks that correspond to digits. In particular, constant
noise increases the RMS of each window uniformly and
cannot destroy or add peaks. Similarly, short, regular noise
retains digit peaks and impacts the RMS of each window
approxmately uniformly for appropriate values of l. This
last assumption is true in audio captchas because regular
noise must have an average duration that is much shorter
than a digit for the captcha to be understandable by humans.
Figure 3 illustrates our RMS subsampling when the window
length is too short (top) and when it is optimal (bottom).
The bottom graph smooths out the signal but retains peaks
that correspond to the 10 digits present in the captcha. In
contrast, an overly short window allows noise to create a
jagged energy plot.

It is important to note that our segmentation technique
is not robust to semantic noise. This kind of noise creates
artificial peaks in the subsampling procedure that differ from
digits only on a semantic level. This weakness is tolerated
in Decaptcha because semantic noise is not common in
audio captchas. Moreover, semantic noise that approaches the
energy of spoken digits is confusing to humans and results
in frustrating captchas. This phenomenon is demonstrated
in Recaptcha captchas which have a high error rate among
humans.

C. Representation

Decaptcha can represent cuts in any of the schemes
described in section II-B. A single representation scheme is
chosen before training and must be used thereafter. Based on
our experiments, the default representation is the cepstrum.

We chose each of our representation schemes because
of their popularity and efficacy in analyzing speech. In
particular, the cepstrum is an experimentally validated
technique that is useful for speech analysis because it
separates low-frequency periodic excitation from the vocal
cords from the formant filtering of the vocal tract [19].
Similarly, STFs are effective in speech recognition systems
and physiological studies suggest that they may be used
in the brain [14]. Finally, the TDC has been applied
successfully to recognizing Mandarin and slovak digits in
the presence of noise, [20] , [10] respectively.

D. Classification

Decaptcha classifies digits using the RLSC algorithm in
an OVA scheme. Parameter tuning is automated via the
method described in [21] and is performed by computing
the multi-category LOO of a range of regularization
parameters. We handle the classification of unidimensional
and two-dimensional representations differently. For
efficiency reasons, the TDC is handled by looking at
the first 5,000 dimensions when they are extracted
column-wise. In constrast, only the first 75 dimensions
of a unidimensional representation are used. A cut is
represented by a 2850-dimensional vector consisting of
these 75 dimensions and all pair-wise products between
them. This representation was chosen because it minimizes
the multi-category LOO for all of our real world captcha
schemes. These experiments suggest that the first 75
dimensions of the cepstrum contain all of the information
necessary to identify a spoken digit and that neighboring
cepstral coefficients are strongly correlated with each other.

Finally, STFs are handled differently because of
misalignment. In general, cuts differ in length and the
actual frame in which each digit begins. We handle these
issues by classifying the contents of a window 30 frames in
length. This window length is chosen for efficiency reasons
because it fits an entire digit but is still small. A cut is
classified by sliding the window along the time axis and
selecting the digit which receives the highest vote from the
OVA scheme at any time point. This approach effectively
selects the maximum response obtained from correlating
the cut with filters that look for each digit.

RLSC is trained with an additional noise class that forces
each OVA classifier to learn a more robust decision rule.
This noise class is not used during the predictive phase.
Samples of digits are obtained from the first 30 frames of
each cut while samples of noise are taken from the last 30.
This rule is used because of its simplicity and experimental
evidence that indicates that digits are more likely to occur
at the beginning of the cut. It is clear that some noise
samples will contain fragments of digits, and vice versa,
but RLSC’s robustness to noise allows it to learn when
some training data is incorrect.

We chose the RLSC algorithm over its more popular
counterpart, the SVM, because of its performance and
efficiency. Decaptcha requires a classifier that, in addition to
performing well, can be trained quickly and automatically for
multi-category classification. SVM’s are problematic in these
respects because T separate classifiers must be computed
when using an OVA scheme with T classes. Moreover,
there is no efficient way to compute the LOO error of
an SVM, so automatic parameter tuning is very costly. In
contrast, RLSC uses dynamic programming to train an OVA
scheme and tune necessary parameters in the time it takes
to train a single binary classifier with a fixed regularization

Figure 4. Authorize Captcha

parameter. These properties can make RLSC orders of
magnitude faster to train than an SVM [21]. This efficiency
is noticeable in Decaptcha; it takes 2 minutes (5 minutes)
to train on thousands of captchas with a unidimensional
(two-dimensional) representation, respectively.

IV. COMMERCIAL CAPTCHAS

This section describes the commercial captchas we used
to validate Decaptcha as well as our testing methodology
and results. We tested audio captchas from Authorize, Digg,
eBay, Microsoft, Recaptcha, and Yahoo. We were unable to
test Google’s captchas because of difficulties we encountered
obtaining reliable annotations; they are so difficult for
humans that they are ineffective as captchas.

A. Corpus description

Authorize. Audio captchas on authorize.net consist of five
letters or digits spoken aloud by a female voice. The voice
clearly articulates each character and there is minimal
distortion. The waveform and spectrogram presented in
Figure 4 show a portion of a captcha containing the
digits/letters K, J , 5 and H . A long pause appears between
spoken characters and vowels are clearly articulated. The
letters K and H , which are fricative consonants, show some
harmonic patterns in the spectrogram while the letter J has
almost no harmonic patterns.

Digg. Audio captchas on digg.com consist of five letters
spoken aloud by a female voice. There is random white
noise in the background and sometimes an empty, but
louder, segment is played between letters. The waveform
and spectrogram presented in Figure 5 show a portion of a
captcha containing the letters J , A and K. The overall brown
color of the spectrogram shows the heavy constant noise
that obscures vowels but still maintains some characteristic
patterns of the letters. These patterns cannot be completely
masked by the white noise since they are necessary for
human recognition. Interestingly, the spectrogram of the

Figure 5. Digg Captcha

Figure 6. Ebay Captcha

letter J shows patterns similar to those of the letter J in
the Authorize captcha (see figure 10).

eBay. Audio captchas on ebay.com consist of six digits
spoken by a different speaker and in a different setting with
regular background noise. The waveform and spectrogram
presented in Figure 6 show part of a captcha containing the
digits 9, 5, 7 and 6. The digits in these captchas are delivered
much faster than those of authorize.net or digg.com. The
waveform shows the variability of the various digits due
to different speakers and different background noise levels,
while the spectrogram shows that the vowels are short and
relatively unobscured by noise.

Microsoft. Audio captchas from live.com consist of ten
digits spoken by different speakers over a low quality
recording. There is a regular background noise consisting
of several simultaneous conversations. The waveform and
spectrogram presented in Figure 7 show a portion of a
captcha containing the digits 2, 9, 0 and 0. Like the
eBay audio captchas, these digits are spoken very quickly.
While all of the high amplitude sections of the waveform

Scheme Authorize Digg eBay Microsoft Recaptcha Yahoo
Length 5 5 6 10 8 7
Type of voice Female Female Various Various Various Child
Background Noise None Constant (random) Constant (random) Constant (random) Constant (random) None
Intermediate noise None None Regular (speech) Regular (speech) Regular (speech) Regular (speech)
Charset 0-9a-z a-z 0-9 0-9 0-9 0-9
Avg. duration 5.0 6.8 4.4 7.1 25.3 18.0
Sample rate 8000 8000 8000 8000 8000 8000 22050
Beep no no no no no yes

Table I
COMMERCIAL AUDIO CAPTCHA FEATURE DESCRIPTION

Figure 7. Microsoft Captcha

Figure 8. Recaptcha Captcha

correspond to actual digits, the spectrogram shows that
the vowels are somewhat obscured by background noise.
Interestingly, the two 0 digits show very similar patterns,
but this pattern is not easily distinguished from the pattern
observed for the 9 digit.

Recaptcha. Audio captchas from recaptcha.net consist of
eight digits spoken by different speakers. Distortions include
background conversations and approximately two semantic

Figure 9. Yahoo Captcha

vocal noises that look like digits in the waveform. Apart
from the presence of semantic noise, Recaptcha captchas
are similar to live.com captchas, but the digits are delivered
much more slowly. The waveform and spectrogram presented
in Figure 8 show a portion of a captcha containing the digits
1, 7, 3 and 5. As will be discussed in 10 the five digit from
this captcha shows similar harmonic patterns the five digit
from Authorize and eBay captchas.

Yahoo. Audio captchas from yahoo.com consist of three
beeps followed by seven digits spoken by a child. The
captcha is obscured with other childrens’ voices in the
background. The waveform and spectrogram presented in
Figure 9 show a portion of a captcha containing the digits 1,
7 and 6. The digits are the largest amplitude sections in the
waveform and the spectrogram shows that the background
voices do not confuse the patterns of the digits. This
spectrogram shows different patterns than the spectrograms
of the other captchas because of the use of a child’s voice. It
seems that the patterns induced by a child are much clearer
than the patterns of an adult’s voice. This makes digits easier
to recognize even though the noise in Yahoo’s captchas has
more energy than the noise in other captchas.

Comparison. Figure 10 illustrates some differences between
commercial captcha schemes. The first line presents the
TFR of the digit five from Authorize, eBay, and Recaptcha

Authorize

eBay RecaptchaAuthorize

Digg

5:

J:

Figure 10. The TFR of the same digit/letter for different captcha schemes

captchas, respectively. All three digits show similar patterns,
although the overall shape is different because of different
speakers. The second line presents the TFR of the letter J
from Authorize and Digg captchas, respectively. Similar
patterns can also be observed: both images show few
harmonic patterns because the letter J is a consonant with
very few harmonic components.

B. Labeling

We used Amazon Mechanical Turk to label captchas
scraped from the aformentioned commercial schemes. We
considered a captcha labeled if three different Turkers
independently agreed on the sequence of digits it contains.
This method allowed us to reuse some labels obtained
during a previous study [4]. Nonetheless, we had to label
10,000 new captchas from each of Microsoft, Recaptcha,
and Yahoo because of label disagreement in our old corpus.
Only approximately 10% of these new captchas satisfied
our label requirement.

Obtaining reliable annotations for Microsoft, Recaptcha,
and Yahoo captchas turned out to be more difficult than
expected: three or more individuals agreed on the same
incorrect labels for some captchas. These incorrect labels
were tolerated when training the RLSC algorithm because of
its robustness to noise. However, we were forced to manually
and accurately annotate 200 captchas from these schemes
for our testing sets because incorrect labels drastically affect
the measured testing error. To see its impact on the per digit
classification rate, suppose that a classifier has a precision
of 0 ≤ p ≤ 1 and w fraction of our testing set is mislabeled.
The testing precision that we measure is

q =
p(1− w) + (1− p)w

10

which is given by the likelihood of successfully labeling
a sample whose label is correct and mislabeling one that
was mislabeled with the same digit, assuming ten digits.
If we solve for p, we get p = 10q−w

10−11w which leads to an
estimate of 60% precision when our real precision is 89%
in the case of Microsoft’s captchas. This implies that almost

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

100

P
er

−
C

ap
tc

ha
 P

re
ci

si
on

 (
%

)

Corpus Size (in Digits)

Authorize
Digg
Ebay
MSLive
Recaptcha
Yahoo

Figure 11. Per-captcha precision as a function of corpus size using the
cepstrum

-70

-60

-50

-40

-30

-20

-10

 0

 0 20 40 60 80 100 120 140 160 180 200

3 7
N

2 1049
N5

D
B

Time in seconds

Figure 12. A standard Recaptcha captcha with the peaks annotated

one third of Microsoft’s captchas were consistently labeled
incorrectly.

C. Results

Decaptcha’s performance on commercial captcha schemes
is presented in Table II and Figure 11. Figure 11 depicts
the impact of the corpus size, measured in number of
labeled digits, on Decaptcha’s per-captcha precision using
the cepstrum. Table II is finer grained and it presents the
coverage, per-digit precision, and per-captcha precision of
each captcha scheme for all possible signal representations.
Our best per-captcha accuracies are highlighted in bold and
are always the unidimensional cepstrum. The per-captcha
precision of Decaptcha is 89% for Authorize, 41% for Digg,
82% for eBay, 48.9% for Microsoft, 45.45% for Yahoo and,
1.5% for Recaptcha. We improve our previous work’s [3]
result on eBay from 75% up to 82%.

Recaptcha. Precision is particularly low on the Recaptcha
scheme because it uses semantic vocal noise. This noise has

Scheme Len Coverage FFT Cepstrum Cepstrum+Mel TFR TFR+Mel TCR TDC
Digit Captcha Digit Captcha Digit Captcha Digit Captcha Digit Captcha Digit Captcha Digit Captcha

Authorize 5 100 93.73 80.39 96.08 87.25 97.06 89.22 92.55 77.45 91.76 71.57 83.14 34.31 97.25 88.24
Digg 5 100 71.08 32.07 76.77 40.84 76.61 41.04 62.15 35.66 74.66 36.65 70.96 27.69 72.19 31.08
eBay 6 85.60 81.58 44.36 92.48 82.88 92.61 80.93 81.84 47.08 81.91 44.36 45.40 0.78 90.60 75.88
Microsoft 10 80.60 76.57 14.69 89.58 48.95 89.30 47.55 88.95 46.85 86.99 41.26 84.48 28.67 87.20 42.66
Recaptcha 8 99.90 26.58 0.00 40.47 1.52 37.44 1.52 38.45 0.00 38.26 0.00 24.62 0.00 30.30 0.00
Yahoo 7 99.10 33.77 0.00 74.71 45.45 68.13 30.30 66.03 22.22 61.74 20.20 38.93 1.35 62.01 17.51

Table II
DECAPTCHA’S COVERAGE, PER-DIGIT PRECISION, AND PER-CAPTCHA PRECISION AS A FUNCTION OF THE REPRESENTATION SCHEME

the same RMS, harmonic content, and overall characteristics
as a regular digit. These properties confuse our segmentation
algorithm because the only distinction between vocal noise
and proper digits is in their meaning; it is the classifier’s job
to distinguish between the two. As evidenced by the large
proportion of mislabeled captchas, humans are also more
error prone in the presence of Recaptcha’s semantic vocal
noise. These two factors make it difficult to acquire a good
training set and lead to poor segmentation during testing.

Performance estimation. A conservative estimate of De-
captcha’s precision on a specific scheme can be obtained by
raising the per-digit precision to the number of digits con-
tained in each captcha. This formula, however, consistently
underestimates the per-captcha precision because it assumes
that the probabilities of erring on the first, second, etc. digit
of a captcha are independent. To illustrate the problem with
this assumption, suppose that the segmenter skips the first
digit of a captcha labeled ”1234”. During testing, the 2 will
be labeled a 1, the 3 will be labeled a 2, and so on. This
label misalignment ensures that each digit is counted as
a mistake, irrespective of whether the classifier recognizes
it correctly. A second way in which digit misclassification
probabilities are not independent is that a mistake on the first
digit of a captcha is likely to be indicative of a particularly
noisy or otherwise difficult captcha. In this case, we are
likely to make mistakes on the remaining digits. Conversely,
misclassified digits are likely to belong to the same captcha,
so per-captcha precision is higher than what it is estimated
to be.

Training corpus size. Figure 11 shows the relationship
between training corpus size and per-captcha success rate.
For Authorize and eBay, Decaptcha achieves maximal
precision early, at approximately 200 and 1000 digits,
respectively. The other captcha schemes continue to benefit
from additional training data, although there are diminishing
returns because the x-axis is on a logarithmic scale. If we
account for the number of digits contained in each captcha,
a reasonable initial training corpus size requires between
100 and 300 labeled captchas. The expected precision of
Decaptcha after training can then be used to decide whether
to add additional data.

Note that both Digg and Authorize use letters and digits
for a total of 36 possible characters whereas the other
schemes only use 10 digits. The more varied a scheme is,
the larger a corpus is needed to obtain the same number of
examples per character. Obviously, therefore, a larger corpus

is needed to provide a sufficient number of samples of each
character. Similarly, we expect a lower rate of increase in
precision, as a function of corpus size, in schemes with more
characters. This is shown in Digg’s precision curve: the rate
at which precision increases is considerably lower than the
rate at which the precision of the 10-digit schemes increase.
Nonetheless, the high initial precision of both Authorize and
Digg indicates that the distortions present in these schemes
are easily handled by Decaptcha.

It is interesting to observe that corpus size serves as an
effective measure of captcha difficulty that coincides with
human observations. In particular Figure 11 allows us to
rank the schemes in terms of difficulty as Recaptcha being
the hardest, followed by a tie between Microsoft and Yahoo.
Authorize is the easiest scheme, followed by eBay and then
Digg. A similar ranking was observed from the percentage
of captchas that were correctly labeled on Amazon Turk.

Impact of signal representation. The precision of each
representation technique relative to the best performing one
varies dramatically depending on the captcha scheme. For
instance, the TDC is nearly optimal with Authorize, but
it almost three times worse than the cepstrum on Yahoo
captchas. Overall, our results show that cepstrum is the best
representation scheme for commercial captchas. However,
we will show in the next section that the TFR is better suited
when the SNR is low.

Classifier confusion. Figure 13 shows Decaptcha’s con-
fusion matrices on the Microsoft, Recaptcha, and Yahoo
schemes using the cepstrum. Note that we use an exponential
scale because it leads to the best contrast. A confusion matrix
depicts the conditional probability that a digit is classified as
a y given that it is actually an x, for all pairs of digits x, y.
In general, such a matrix will not be symmetric. Microsoft’s
matrix indicates that the digits 9, 6, and 3 are often mistaken
for the digits 5, 2, and 2, respectively. These three pairs are
among the most frequently confused digits for Recaptcha
as well. The Recaptcha confusion matrix also reflects our
overall higher error rates on the Recaptcha scheme. Finally,
Yahoo’s confusion matrix significantly differs from the other
two and has a nearly uniform error distribution. This last
property was observed because all off-diagonal elements
become white when we subtract the mean from the original
confusion matrix. It will be interesting to investigate how
confusion patterns change as a function of the sampling rate,
voice, and distortions used.

Figure 13. Decaptcha’s Confusion Matrices on Microsoft, Recaptcha, and Yahoo Schemes Using Cepstrum

V. SYNTHETIC EVALUATION

This section reports Decaptcha’s performance on a syn-
thetic corpus that was generated following methodology
introduced by [15]. The synthetic corpus uses nine types
of noise described in Table III. We measured Decaptcha’s
performance on 2000 captchas for each noise type at SNRs
ranging from −5 to 30 dB. Each captcha is composed of six
spoken digits, spaced randomly between 0.5 and 4 seconds.

Familly Name Description

Constant Noise
White White Gaussian noise.

buzz Sine waves at 700 Hz,
2100 Hz and 3500 Hz.

Regular noise

pow
10 ms bursts of white
Gaussian noise repeated
every 100 ms.

rnoise

Every 100 ms, a section
of the signal is replaced
by white noise of the
same RMS amplitude.

lofi

Add distortion, cracks,
bandwidth limiting and
compression. Simulates
old audio equipment.

echo
The signal starts
to echo at 0.6, 1.32, and
1.92 seconds.

disintegrator

Amplifies random half-
cycles of the signal by
a multiplier. Simulates
a bad audio channel.

Semantic noise

chopin Chopin Polonaise for
Piano No. 6, Op. 53.

gregorian Gregorian chant.

nina “Just in time“ by
Nina Simone.

Table III
DESCRIPTION OF THE NOISES USED IN OUR SYNTHETIC CORPUS

Performance. Decaptcha’s coverage of the synthetic corpus
is depicted in Figure 14. Our overall coverage is between
80 and 90%, even for SNRs of −5dB. The only exceptions
occur with white and gregorian noise, which achieve a
coverage of 60% at low SNRs. Precision using TFR and

−5051015202530
55

60

65

70

75

80

85

90

95

100

SNR (dB)

C
ov

er
ag

e
(%

)

buzz, echo, nina, pow
chopin, disintegrator, lofi, rnoise
white
gregorian

Figure 14. Coverage as a Function of Noise

cepstrum representations is presented in Figures 15 and 16,
respectively. As expected, precision is directly related to
SNR. For readability purposes, we have collapsed all of the
figures by combining similar curves.

Constant noise. Precision drops most drastically for con-
stant noises once the SNR is below 5. Indeed, as the SNR
gets close to zero, constant noises mask any spoken digits
and therefore make the captcha unintelligible. Decaptcha
responds to such noise in a similar way as humans so
constant noise should only be used as background noise
with a low RMS.

Regular noise. The worst-measured precision of 64% is
achieved on the pow noises. Otherwise, Decaptcha has
a precision above 80% at all SNRs. We believe that the
pow noise leads to poor precision because it confuses the
segmentation algorithm when the SNR is low. Nonetheless,
Decaptcha handles regular noise remarkably well, even
at low SNRs, which may suggest that computers can
outperform humans with this type of noise.

−505101520
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

P
er

−
C

ap
tc

ha
 P

re
ci

si
on

 (
%

)

white
buzz
gregorian
nina
chopin
pow
echo, lofi, rnoise, disintegrator

Figure 15. Precision of the TFR as a Function of Noise

−5051015202530
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

P
er

−
C

ap
tc

ha
 P

re
ci

si
on

 (
%

)

white
pow
gregorian
nina, chopin
disintegrator, echo, rnoise, buzz, lofi

Figure 16. Precision of the Cepstrum as a Function of Noise

Semantic noise. As expected from Decaptcha’s low preci-
sion on Recaptcha, the nina, gregorian and chopin noises
produce the most robust captchas. Unlike constant noise,
humans are well equipped to handle semantic noise, even
at low SNRs, because we can select which voice to listen
to. Furthermore, semantic noise consistently leads to lower
precision than regular noise, especially at low SNRs. This
noise is therefore the least harmful to human understanding
at levels that hinder Decaptcha’s performance.

The impact of sound representation. A final takeaway
from this evaluation is that the TFR representation gives
better results than the cepstrum when dealing with constant
noise at low SNRs.

VI. FURTHER RELATED WORK

The first discussion of the captcha idea appears in [18],
though the term CAPTCHA was coined later in [28].
Text/image based captchas have been studied extensively
[11], [12], [5] and there is a long record of successful
attempts at breaking popular sites’ visual captchas [7]. For

example in March 2008, a method to break 60% of MSN
visual captchas was disclosed [29] and more recently an
attack against the recaptcha captcha was demonstrated at
the Defcon[9]. Using machine learning to break captchas
applies to almost every kind of captcha and in 2008,
Golle [8] successfully used machine learning attacks to
break the Microsoft picture based scheme Assira.

VII. CONCLUSION

Decaptcha’s performance on commercially available audio
captchas indicates that they are vulnerable to machine
learning based attacks. In almost all cases, we achieve
accuracies that are significantly above the 1% threshold for
a scheme to be considered broken. Compared with human
studies done in [4], Decaptcha’s accuracy rivals that of
crowdsourcing attacks. Morever, our system does not require
specialized knowledge or hardware; its simple two-phase
design makes it fast and easy to train on a desktop computer.
As such, automatic solvers are a credible threat and measures
must be taken to strengthen existing audio captchas.

Our experiments with commercial and synthetic captchas
indicate that the present methodology for building audio
captchas may not be rectifiable. Besides Recaptcha, all of the
commercial schemes we tested use combinations of constant
and regular noise as distortions. Based on the difficulties
we had with obtaining reliable annotations, human accuracy
plummets when such distortions contribute significantly to
the signal. On the other hand, Decaptcha’s performance on
our synthetic corpus indicates that automated solvers can
handle such noise, even at low SNRs. All in all, computers
may actually be more resilient than humans to constant and
regular noise so any schemes that rely on these distortions
will be inherently insecure.

Our results also pinpoint an inherent weakness of two-
phase machine learning attacks that may be exploited, at
least temporarily. As evidenced by Decaptcha’s difficulties
with Recaptcha, semantic noise hinders the segmentation
stage by introducing noise that can be confused with a digit.
Architectures that successfully overcome such distortions
require a monolithic design that blends together classification
and segmentation to endow the segmentation algorithm with
semantic understanding. These designs are more difficult
to realize than the simple two-phase approach and have
received little attention. We therefore recommend that future
designs for audio captchas investigate the use of semantic
noise.

Future directions. We plan to extend our work in two
directions. First, we would like to modify Decaptcha to
handle audio captchas that contain spoken words. It is
important to understand whether such “continuous” designs
lead to more secure captchas. Secondly, we would like to
investigate a series of design principles that may lead to
more secure captchas. These include the use of semantic
noise and leveraging differences between the ways that
humans and computers make mistakes so as to maximize

an attacker’s difficulty and cost.

ACKNOWLEDGMENT

We thank David Molnar and anonymous reviewers for
their comments and suggestions. This work was partially
supported by the National Science Foundation, the Air
Force Office of Scientific Research, and the Office of Naval
Research.

REFERENCES

[1] Y. Ariki, S. Mizuta, M. Nagata, and T. Sakai. Spoken-
word recognition using dynamic features analysed by two-
dimensional cepstrum. In Communications, Speech and Vision,
IEE Proceedings I, volume 136, pages 133–140. IET, 2005.
2

[2] B. Boashash. Time frequency signal analysis and processing
: a comprehensive reference / edited by Boualem Boashash.
Elsevier, Amsterdam ; Boston :, 2003. 4

[3] E. Bursztein and S. Bethard. Decaptcha: breaking 75% of
eBay audio CAPTCHAs. In Proceedings of the 3rd USENIX
conference on Offensive technologies, page 8. USENIX
Association, 2009. 1, 8

[4] E. Bursztein, S. Bethard, C. Fabry, J. Mitchell, and D. Jurafsky.
How good are humans at solving CAPTCHAs? a large
scale evaluation. In Security and Privacy (SP), 2010 IEEE
Symposium on, pages 399–413. IEEE, 2010. 8, 11

[5] K. Chellapilla and P. Simard. Using machine learning to
break visual human interaction proofs. In M. Press, editor,
Neural Information Processing Systems (NIPS), 2004. 11

[6] D. Childers, D. Skinner, and R. Kemerait. The cepstrum: A
guide to processing. Proceedings of the IEEE, 65(10):1428 –
1443, 1977. 2

[7] D. Danchev. Microsoft’s captcha successfully broken. blog
post http://blogs.zdnet.com/security/?p=1232, May 2008. 11

[8] P. Golle. Machine learning attacks against the asirra captcha.
In ACM CCS 2008, 2008. 11

[9] C. Houck and J. Lee. Decoding recaptcha. http://www.defcon.
org/html/links/dc-archives/dc-18-archive.html. 11

[10] R. Jarina, M. Kuba, and M. Paralic. Compact representation
of speech using 2-d cepstrum - an application to slovak digits
recognition. In V. Matousek, P. Mautner, and T. Pavelka,
editors, TSD, volume 3658 of Lecture Notes in Computer
Science, pages 342–347. Springer, 2005. 2, 5

[11] P. S. K Chellapilla, K Larson and M. Czerwinski. Building
segmentation based human- friendly human interaction proofs.
In Springer-Verlag, editor, 2nd Int’l Workshop on Human
Interaction Proofs, 2005. 1, 11

[12] P. S. K Chellapilla, K Larson and M. Czerwinski. Designing
human friendly human interaction proofs. In ACM, editor,
CHI05, 2005. 11

[13] S. Kay and J. Marple, S.L. Spectrum analysis: A modern
perspective. Proceedings of the IEEE, 69(11):1380 – 1419,
1981. 2

[14] M. Kleinschmidt. Localized spectro-temporal features for
automatic speech recognition. In Proc. Eurospeech, pages
2573–2576, 2003. 5

[15] G. Kochanski, D. Lopresti, and C. Shih. A reverse turing
test using speech. In Seventh International Conference on
Spoken Language Processing, pages 16–20. Citeseer, 2002.
1, 2, 10

[16] R. McMillan. Wiseguy scalpers bought tickets with
captcha-busting botnet. Computerworld, Nov. 2010.
http://www.computerworld.com/s/article/9197278/Wiseguy
scalpers bought tickets with CAPTCHA busting botnet. 1

[17] G. Mori and J. Malik. Recognizing objects in adversarial
clutter: Breaking a visual captcha. In In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, pages 134–141,
2003. 1

[18] M. Naor. Verification of a human in the loop or identification
via the turing test. Available electronically: http://www.
wisdom.weizmann.ac.il/∼naor/PAPERS/human.ps, 1997. 1,
11

[19] A. M. Noll. Cepstrum pitch determination. Acoustical Society
of America Journal, 41:293–+, 1967. 5

[20] H. Pai and H. Wang. A study of the two-dimensional
cepstrum approach for speech recognition. Computer Speech
& Language, 6(4):361–375, 1992. 5

[21] H. Paskov and L. Rosasco. Notes on Regularized Least
Squares: Multiclass Classification. Technical report, MIT,
2011. 2, 5, 6

[22] R. M. Rifkin. Everything Old Is New Again: A Fresh Look
at Historical Approaches. PhD thesis, MIT, 2002. 3

[23] R. Santamarta. Breaking gmail’s audio captcha. http://blog.
wintercore.com/?p=11. 1

[24] Shadowserver. Conficker. http://www.shadowserver.org/wiki/
pmwiki.php/Stats/Conficker, 2010. 1

[25] P. Y. Simard. Using machine learning to break visual
human interaction proofs (hips. In Advances in Neural
Information Processing Systems 17, Neural Information
Processing Systems (NIPS’2004, pages 265–272. MIT Press,
2004. 1

[26] Y. Soupionis and D. Gritzalis. Audio CAPTCHA: Existing
solutions assessment and a new implementation for VoIP
telephony. Computers & Security, 29(5):603–618, 2010. 1

[27] J. Tam, J. Simsa, S. Hyde, and L. Von Ahn. Breaking audio
captchas. Advances in Neural Information Processing Systems,
1(4), 2008. 1

[28] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. Captcha:
Using hard ai problems for security. In Sringer, editor,
Eurocrypt, 2003. 11

[29] J. Yan and A. S. E. Ahmad. A low-cost attack on a microsoft
captcha. Ex confidential draft http://homepages.cs.ncl.ac.uk/
jeff.yan/msn draft.pdf, 2008. 11

[30] J. Yan and A. S. El Ahmad. A low-cost attack on a microsoft
captcha. In Proceedings of the 15th ACM conference on
Computer and communications security, CCS ’08, pages 543–
554, New York, NY, USA, 2008. ACM. 1

http://blogs.zdnet.com/security/?p=1232
http://www.defcon.org/html/links/dc-archives/dc-18-archive.html
http://www.defcon.org/html/links/dc-archives/dc-18-archive.html
http://www.computerworld.com/s/article/9197278/Wiseguy_scalpers_bought_tickets_with_CAPTCHA_busting_botnet
http://www.computerworld.com/s/article/9197278/Wiseguy_scalpers_bought_tickets_with_CAPTCHA_busting_botnet
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://blog.wintercore.com/?p=11
http://blog.wintercore.com/?p=11
http://www.shadowserver.org/wiki/pmwiki.php/Stats/Conficker
http://www.shadowserver.org/wiki/pmwiki.php/Stats/Conficker
http://homepages.cs.ncl.ac.uk/jeff.yan/msn_draft.pdf
http://homepages.cs.ncl.ac.uk/jeff.yan/msn_draft.pdf

[31] J. Yan, A. Salah, and E. Ahmad. Breaking visual captchas
with naı̈ve pattern recognition algorithms. In Twenty-Third
Annual In Computer Security Applications Conference, 2007.
1

	I Introduction
	II Background
	II-A Segmentation
	II-B Signal Representations
	II-C Classification
	II-D Metrics

	III Decaptcha
	III-A Overview
	III-B Segmentation
	III-C Representation
	III-D Classification

	IV Commercial Captchas
	IV-A Corpus description
	IV-B Labeling
	IV-C Results

	V Synthetic Evaluation
	VI Further Related Work
	VII Conclusion
	References

